The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites
نویسندگان
چکیده
Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992–2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.
منابع مشابه
تجزیه و تحلیل آتشسوزی جنگل با منشأ آبوهوایی با دادههای ماهوارهای در منطقهی البرز
Forest fire is one of the important problems in Iran which is caused by different factors such as human and natural factors. One of these factors is climate conditions that can be created by heat wave and special circulation of atmospheric phenomena. Occurrence of forest fire in north of Iran have different impacts on environment such as destruction of natural. According to the position of Iran...
متن کاملSynergisms among fire, land use, and climate change in the Amazon.
The Amazon is being rapidly transformed by fire. Logging and forest fragmentation sharply elevate fire incidence by increasing forest desiccation and fuel loads, and forests that have experienced a low-intensity surface fire are vulnerable to far more catastrophic fires. Satellites typically detect thermal signatures from 40 000 to 50 000 separate fires in the Amazon each year, and this number ...
متن کاملSurface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002
India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomaly recorded by FAOSTAT from 1961 to 2014. In that year, freshwater limitation was blamed as respon...
متن کاملAdvantages of Using Microwave Satellite Soil Moisture over Gridded Precipitation Products and Land Surface Model Output in Assessing Regional Vegetation Water Availability and Growth Dynamics for a Lateral Inflow Receiving Landscape
To improve the understanding of water–vegetation relationships, direct comparative studies assessing the utility of satellite remotely sensed soil moisture, gridded precipitation products, and land surface model output are needed. A case study was investigated for a water-limited, lateral inflow receiving area in northeastern Australia during December 2008 to May 2009. In January 2009, monthly ...
متن کاملContrasting soil thermal responses to fire in Alaskan tundra and boreal forest
Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the shortand long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009